Human Mitochondrial Genome Editing Toolkit Expands

Scientists at the Center for Genome Engineering at the Institute for Basic Science (IBS) in Daejeon, South Korea, have developed a programmable tool that can perform adenine (A)-to-guanine (G) base conversions in the human mitochondrial genome.
The base editors used in the new mitochondrial gene-editing platform are called TALEDs (transcription activator-like effector-linked deaminases), and have three components: a custom-designed TALE (transcription activator-like effector) that targets a DNA sequence, an engineered deoxyadenosine deaminase (TadA8e) derived from the Escherichia coli protein TadA that converts A to G, and a catalytically impaired, full-length, or split cytidine deaminase (DddA) that unwinds DNA and makes it more accessible to TadA8e.